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Differentiation of sparkling wines (cava and champagne)
according to their mineral content
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Abstract

The metal content of a number of sparkling wines was determined by atomic spectrometry techniques. Al, Ba, Ca, Cu, Fe, K, Mg, Mn, Na, P,
Sr and Zn by using inductively coupled plasma atomic emission spectrometry (ICP-AES); Cd, Ni and Pb by graphite furnace atomic absorption
spectrometry (GFAAS) and As from hydride generation AAS (HGAAS). Two kinds of sparkling wines were studied with D.O. trademark: cava
and champagne. 18 samples of “brut” cava and 17 samples of “brut” champagne of different brands were analyzed following the procedure
described in the paper. By using the metal concentrations as chemical descriptors the two classes of samples (cava and champagne) are
perfectly discriminated, when applying pattern supervised learning recognition techniques such as linear discriminant analysis (LDA) and
soft independent modeling of class analogie (SIMCA). The number of false positives and negatives were zero, which indicates a remarkable
authentication power of the descriptors used.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Data on the mineral content in wines have been exten-
sively studied and reported due to their implications in
organoleptic, hygienic and dietetic characteristics as well
as their toxicological implications[1]. Moreover, it allows
the characterization and the geographical differentiation
of wines when reliable chemical analyses techniques in
combination with modern chemometrical methods are used
[2–5]. Similarly, several authors have proposed the use of
the mineral content to characterise brandies[6], vinegars
[7], coffees[8] and teas[9]. However, traditional sparkling
wines have been scarcely studied in the chemical literature.
Among the different sparkling wines there are two kinds
whose consumption is increasing: Spanish cava and French
champagne.
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Because both sparkling wines are made following the
“traditional method” process of bottle fermentation (named
“champanoise method” in France), the only differences con-
cern the different geographical locations (soil and climate)
and also the types of grapes used in each region.

In the elaboration process the base wine is transformed
into the final product by means of different steps, starting
from the introduction of the base wine into the bottle with
sugar and yeast (decanting), where the second fermenta-
tion take place. The bottles are placed horizontally in un-
derground cellars for a minimum of nine months in case of
cava wines and twelve months in champagne wines. Once
the aging of the wine is finished, the remotion of the bottles
is made in order to bring the yeast sediment in the neck. In
this way, when the bottle is opened to expel the sediments
(disgorging) the loss of wine is minimum. Finally, the ini-
tial volume is restored with dosing liqueur (a mixture made
of cane sugar and old wine) and the bottle is sealed (cork-
ing). “Brut” cava and “Brut” champagne have no addition
of dosing liqueur, being their sugar content between 0 and
15 g l−1.

0039-9140/$ – see front matter © 2003 Elsevier B.V. All rights reserved.
doi:10.1016/j.talanta.2003.11.015



378 A. Jos et al. / Talanta 63 (2004) 377–382

Due to the complexity of sparkling wines it is necessary to
determine many of its constituents to obtain a good chemical
characterization. For this reason, the evaluation of metal
profiles of “brut” cava and “brut” champagne samples may
be of great importance in order to differentiate between both
of these sparkling wines.

In the present paper the content of Al, Ba, Ca, Cu, Fe, K,
Mg, Mn, Na, P, Sr and Zn have been determined in samples
of two types of “brut” sparkling wines (cava and champagne)
by using inductively coupled plasma atomic emission spec-
trometry (ICP-AES) with a previous acid digestion. Cd, Ni
and Pb were measured by graphite furnace atomic absorp-
tion spectrometry (GFAAS) and As was analyzed using hy-
dride generation atomic absorption spectrometry (HGAAS).

Variable–variable plots were used to visualize data
classes, and pattern recognition techniques, such as linear
discriminant analysis (LDA) and soft independent mod-
elling of class analogy (SIMCA) were applied.

2. Experimental

2.1. Apparatus

Elemental analyses were carried out on a A Fison-ARL
3410 inductively coupled plasma atomic emission spectrom-
eter (Fisons Instruments, Valencia, CA).Table 1shows the
analytical lines used for each element, as well as the instru-
mental conditions. Moreover, a Perkin Elmer 1100B atomic
absorption spectrometer attached to a PE HG-500 graphite
furnace (with a PE AS-40 automatic inyector, all from Perkin
Elmer, Norwalk, CT, USA) was employed for quantitation

Table 1
ICP-AES operating conditions

Parameter

RF frequency 27.12 MHz
Operating power 650 W
Coolant Ar flow 7.5 l min−1

Plasma Ar flow 0.8 l min−1

Carrier Ar flow 0.8 l min−1

Torch type Minitorch
Nebulizer type Meinhard
Sample flow rate 2.3 ml min−1

Detection wavelengths (nm−1)
Al 396.152
Ba 455.403
Ca 393.366
Fe 259.94
K 766.490
Mg 279.553
Mn 257.610
Na 589.592
P 214.914
Sr 407.771
Zn 213.856
Cu 324.754

Table 2
HG 500 graphite furnace parameters used for analysis of Cd, Pb, and Ni
in cava and champagne samples

Step Temperature (◦C) Ramptime (s) Hold time (s)

Ni Cd, Pb

1 80 80 5 15
2 100 100 5 15
3 600 1400 5 15
4 1600 2400 0 3a

5 2500 2500 1 1
6 20 20 5 5

Argon flow rate: 300 ml min−1; injection volume: 20�l; spectral band-
width 0.7 nm.

a Gas stop for reading.

of Cd, Pb and Ni by the GFAAS technique. The graphite
furnace temperature program is gathered inTable 2. This
equipment was adjusted to a PE MHS-10 hydride generator
(Perkin Elmer, Norwalk, CT, USA) for determining As total
content by HGAAS. All the cava and champagne samples
were previously degassed using an ultrasonic bath (Zarallo,
Spain).

2.2. Chemical and reagents

Merck (Darmstadt, Germany) CertiPUR®. ICP-multi-
element standard solutions of about 1000 mg l−1 were
used as stock solution for calibration. Sodium borohydride
(Merck, analytical grade) 1.4% (w/v) in 1 M sodium hydrox-
ide was used for generating the arsine in the determination
of As. A mixture of hydrogen peroxide and concentrated
sulfuric acid (15+ 0.5 ml both of Merck, analytical grade)
was used for the mineralization of samples. Other reagents
where of reagent grade or better. Milli-Q treated water was
used throughout.

2.3. Samples

Eighteen samples of “brut” cava of different brands with
D.O. trademark and 17 of “brut” champagne were purchased
in liquor retails and markets. The alcoholic content ranged
from 11.5 to 12% (v/v) ethanol for cava samples and from
12 to 12.5% (v/v) for champagne samples. An identification
code was assigned to each sample, C for catalonian cavas
and F for french champagne samples.In the D.O. cava, the
main varieties of grapes authorised for the elaboration of
white cavas are Macabeo, Xarel·lo and Perellada, and also
Chardonnay, Garnatxa and Monastrell, whereas for the pro-
duction of A.O.C. champagne Pinot Noire, Pinot Meunier
and Chardonnay are used. In reference to the growing areas,
the zone producing cava is integrated by 160 municipalities,
ubicated in seven autochtonous communities although the
region of Penedés, in the south of Barcelona, produces more
than 95% of total production. In fact, all the cava brands
used in this work are from the Penedés region. However, in
France, only the vineyards in the champagne region, located
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ninety miles northeast of Paris, can be used to elaborate it. In
fact, the unique mineral elements in the soil are considered as
a vital factor in the distinctive characteristics and complexity
of these sparkling wines (web pageshttp://www.crcava.es
andhttp://www.champagne-vintage-charts.com. Last access
30/06/2003).

Once opened, cava samples were degassed and were sub-
mitted to the following digestion procedure: 50 ml of de-
gassed sparkling wine with 15 ml of hydrogen peroxide
(30%, v/v) are heated at 80◦C until a volume of about 20 ml.
Then, 0.5 ml of concentrated sulfuric acid is added, and the
heating is continued until a final volume of about 2 ml. This
volume is mixed with Milli-Q treated water up to the start-
ing volume. Three replicated digestions were made for each
sample. Three blanks were prepared in an identical way,
but omitting the sample. The average of blank ICP-AES (or
GFAAS and HGAAS) signals was substracted from analyt-
ical signals of samples before interpolation on calibration
graphs.

2.4. Data analysis

The content of each mineral element was considered as
chemical descriptor. Pattern recognition methods were ap-
plied to the data matrix, composed of 16 columns (the an-
alyzed elements) and 35 rows (brut sparkling wines). LDA
was used for the first level of supervised pattern recogni-
tion (PR) methods and SIMCA was employed as typical
class-modeling method for the second level of PR, with
the proposal of obtaining classification rules. The statistical
package, STATISTICA 99, from Statsoft[10] was used for
all the chemometric calculations, except SIMCA, whose cal-
culations were performed utilizing the program SIMCA-PA
from Umetrics[11].

3. Results and discussion

3.1. Mineral content in sparkling wine samples

The metal content of the different sparkling wines (cava
and champagne varieties) was determined and carefully scru-
tinized. The results, expressed in milligram per litre, were
obtained from triplicate measurements and rounded up to the
last significant figure associated with random error.Table 3
shows these results. The corresponding descriptive basic
statistic for both types of beverages can be seen inTable 4.
Looking at these values, K was the element with a ma-
jor content in all samples. The mean concentration of K
was similar in cava and champagne samples, with aver-
age concentrations of 396 and 346 mg l−1, respectively. Ca
and Mg presented lower and similar contents, their average
values being 97 and 80 mg l−1, respectively, in cava sam-
ples and 83 and 84 mg l−1 in champagne ones. However, P
levels were higher in champagne samples, and this could
be due to differences between raw materials (grapes from

different varieties and locations) used in the fermentation
process. Sodium was also present with values higher than
10 mg l−1. Its origin depends on the raw material; in fact, the
Na content in cava samples was approximately double that
in champagne ones. The other analyzed metals mostly ap-
peared with values close to 1 mg l−1, such as Al and Fe, and
even lower, Cd, Ni and Pb being the metals with the lowest
concentration.

3.2. Statistical procedures for classification

Using the mineral content found in the analyzed sparkling
wines samples as chemical descriptors, statistical methods
were applied in order to establish differences between cava
and champagne samples for classification and authentica-
tion purposes. Until now, no attempts have been made on
this subject. There are a number of display methods for
visualizing data trends, such as principal component anal-
ysis (PCA) [12] or cluster analysis (CA)[13]. However,
a very straightforward way to select optimal descriptors
for visualizing data trends are the variable–variable plots
[14]. Thus, if these plots are made, it can be seen that
only with the descriptors Zn and Sr it is possible to dif-
ferentiate between cava and champagne samples, as de-
picted inFig. 1. Nevertheless, although these two variables
show a fair separation of both the classes of sparkling
wine, they are not sufficient for authentication purposes.
Thus, other procedures building class borders and enabling
the computation of false positive and negative (linked
to the possibilities of typeα and β errors) are needed.
They are called supervised learning pattern recognition
methods.

3.3. Supervised learning PR methods

With these methods, we assume an a priori knowledge of
the number of classes. In this case, only two classes were
considered, i.e. cava (C) and champagne (F) brut samples. A
distinction can be made between discriminating (hard classi-
fication) and class-modeling (soft classification) techniques,
according to the concept employed to derive the classifica-
tion rules[15].

3.3.1. LDA
Linear discriminant analysis is a typical discriminating

method, belonging to the first level of PR, where objects are
classified into either of a number of defined classes[16].
After applying standard LDA[15,17], and according to the
Wilks’ lambda values of each variable in the model, nine
variables, namely Zn, Sr, Pb, Na, Cu, Ni, As, P and Cd seem
to be optimal descriptors for distinguishing between class
C and F samples. Looking at the posteriori probabilities, a
recognition ability of 100% was obtained. In order to evalu-
ate the classification performance, the leave-one-out (LOO)
[18] method was used as a validation procedure, obtaining
a prediction ability of 100%.

http://www.crcava.es
http://www.champagne-vintage-charts.com
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Table 3
Experimental resultsa for determination of elements (mg l−1) in “brut” cava and champagne samples by ICP-AES, GFAAS* and HGAAS**

Sample Code Zn Mn Fe Cu Al Sr Ba P Mg Ca Na K Pb* Cd* Ni* As**

1 C 0.291 0.489 0.67 ND 0.59 0.283 0.056 50.1 67.8 103.6 11.37 388.5 0.0348 0.0191 0.0577 0.011
2 C 0.285 0.705 1.51 0.039 2.06 0.929 0.092 58.8 96.5 118.4 25.43 384.3 0.0111 0.0006 0.0135 0.013
3 C 0.270 0.625 1.56 0.046 1.34 0.770 0.035 84.1 58.0 82.9 29.23 404.7 0.0103 0.0006 0.0052 0.016
4 C 0.350 0.496 0.67 ND 1.12 0.328 0.031 84.2 61.2 59.2 17.04 453.4 0.0323 0.0005 0.0167 0.007
5 C 0.342 0.731 1.78 0.034 1.16 0.971 0.033 73.1 62.5 75.5 31.42 423.9 0.0018 0.0006 0.0040 0.015
6 C 0.302 0.603 1.07 0.040 1.05 0.497 0.035 80.5 65.5 78.7 32.16 408.6 0.0012 0.0004 0.0280 0.010
7 C 0.270 0.580 2.46 ND 1.75 0.349 0.043 119.7 58.5 100 23.93 352.8 0.0137 0.0001 0.0033 0.012
8 C 0.208 0.482 1.39 ND 1.75 0.292 0.052 66.0 63.4 112.3 16.07 345.0 0.0123 0.0004 0.0042 0.010
9 C 0.226 0.558 1.6 ND 2.78 0.489 0.043 65.2 77.1 95.1 21.19 349.1 0.0110 0.0003 0.0027 0.012

10 C 0.410 0.601 0.52 0.178 0.57 0.962 0.046 70.7 87.8 81.9 25.05 430.3 0.0092 0.0019 0.0555 0.012
11 C 0.275 0.821 1.83 0.145 1.20 0.659 0.065 87.9 98.8 108.2 24.67 395.4 0.0047 0.0006 ND 0.012
12 C 0.258 0.451 2.77 0.151 2.30 0.301 0.039 71.6 60.0 98.8 12.78 338.1 0.0837 0.0010 0.0032 0.014
13 C 0.372 0.753 1.38 0.044 1.16 0.903 0.044 89.8 98.6 91.6 25.13 338.1 0.0025 0.0003 0.0080 0.012
14 C 0.427 0.759 0.94 0.112 1.01 0.990 0.040 82.2 90.6 96.5 24.66 490.2 0.0011 ND 0.0838 0.013
15 C 0.234 0.559 1.28 0.194 1.78 0.655 0.050 130.7 99.5 116.1 23.49 458.7 0.0032 0.0014 0.0109 0.015
16 C 0.575 0.749 1.08 ND 0.62 1,061 0.034 89.5 99.0 95.3 24.94 391.7 0.0079 0.0010 ND 0.009
17 C 0.248 0.940 2.41 0.152 1.90 0.999 0.069 85.5 104.9 122.2 20.20 414.7 0.0062 0.0007 0.0201 0.013
18 C 0.247 0.668 1.29 ND 2.39 0.989 0.059 72.3 100.3 106.2 23.60 365.7 0.0104 0.0006 0.0024 0.011
19 F 0.668 0.734 1.53 0.043 0.65 0.223 0.028 91.7 83.5 86.1 10.14 367.2 0.0123 ND 0.0047 0.013
20 F 0.601 0.639 0.808 0.043 0.66 0.262 0.027 169.7 81.1 72.9 9.22 336.1 0.0057 ND 0.0101 0.013
21 F 0.524 0.700 1.668 0.049 0.63 0.262 0.029 75.5 72.5 80.9 9.56 353.3 0.0118 0.0003 0.0052 0.013
22 F 0.557 0.715 1.583 0.038 0.72 0.256 0.025 81.2 77.5 89.3 10.19 337.6 0.0100 0.0006 ND 0.012
23 F 0.630 0.812 1.038 0.048 0.80 0.277 0.039 125.7 87.56 79.3 13.04 426.3 0.0077 0.0011 0.0014 0.013
24 F 0.444 0.632 1.521 ND 1.01 0.270 0.025 120.7 73.5 91.0 10.42 319.1 0.0088 0.0016 ND 0.010
25 F 0.589 0.66 1.895 0.054 0.86 0.273 0.040 127.3 78.9 91.6 10.90 391.7 0.0111 0.0011 0.0088 0.016
26 F 0.728 0.857 2.356 0.049 0.78 0.322 0.028 113.5 95.8 87.9 11.04 378.6 0.0220 0.0017 0.0023 0.015
27 F 0.651 0.943 1.003 0.039 0.73 0.225 0.038 128.6 93.8 93.3 9.77 264.8 0.0226 0.0017 0.0032 0.012
28 F 0.742 0.856 1.401 0.055 0.67 0.291 0.055 142.6 91.3 81.5 11.78 334.2 0.0130 0.0007 0.0187 0.012
29 F 0.697 0.838 1.354 0.044 1.27 0.293 0.037 107.3 82.2 76.5 12.39 379.0 0.0157 0.0018 0.0061 0.013
30 F 0.508 0.851 1.439 0.483 0.57 0.301 0.034 103.8 82.9 86.2 17.73 311.8 0.0095 0.0004 ND 0.014
31 F 0.707 0.835 1.332 0.034 0.56 0.271 0.029 138.7 89.8 64.6 9.38 332.7 0.0131 0.0003 ND 0.014
32 F 0.639 0.926 2.512 0.059 0.78 0.273 0.030 117.9 85.2 82.2 9.78 339.2 0.0130 0.0012 0.0046 0.013
33 F 0.681 0.851 1.738 0.092 0.59 0.372 0.039 121.8 82.9 86.2 7.70 339.0 0.0106 0.0014 0.0522 0.017
34 F 0.694 0.964 2.169 0.039 0.80 0.305 0.047 105.4 89.4 86.2 14.55 308.2 0.0127 0.0006 0.0099 0.016
35 F 0.664 0.786 2.188 0.071 0.76 0.261 0.031 117.4 78.9 80.8 11.05 358.3 0.0122 0.0016 ND 0.015

ND: not detected.
a Mean of triplicate determinations.

Table 4
Metal concentrations in “Brut” cava samples (n = 18) and “Brut” champagne samples (n = 17)

Element “Cava samples” “Champagne” samples

Mean± S.D. (mg l−1) Median (mg l−1) Range of quantified
values (mg l−1)

Mean± S.D. (mg l−1) Median (mg l−1) Range of quantified
values (mg l−1)

Al 1.5 ± 0.6 1.271 0.6–2.8 0.75± 0.17 0.73 0.56–1.27
As 0.012± 0.002 0.012 0.007–0.016 0.014± 0.002 0.013 0.010–0.017
Ba 0.048± 0.016 0.043 0.031–0.092 0.340± 0.008 0.031 0.025–0.055
Ca 97± 16 98 59–122 83± 7 86 65–93
Cd 0.0010± 0.0030 0.0070 0.0001–0.0190 0.0090± 0.0006 0.0011 0.0003–0.0018
Cu 0.1± 0.06 0.1 0.03–0.2 0.07± 0.11 0.048 0.034–0.48
Fe 1.5± 0.6 1.4 0.5–2.7 1.6± 0.5 1.5 0.8–2.5
K 396 ± 44 394 338–490 346± 37 339 265–426
Mg 80 ± 18 82 58–105 84± 7 83 72–96
Mn 0.6 ± 0.1 0.6 0.4–0.9 0.8± 0.1 0.8 0.6–1
Na 23± 6 24 11–32 11± 2 10 8–18
Ni 0.015 ± 0.021 0.006 0.001–0.084 0.075± 0.012 0.005 0.001–0. 052
P 81± 19 81 50–131 117± 23 118 75–170
Pb 0.014± 0.014 0.011 0.001–0.084 0.013± 0.004 0.012 0.006–0.023
Sr 0.7± 0.3 0.04 0.03–1.06 0.28± 0.03 0.27 0.22–0.37
Zn 0.31± 0.09 0.28 0.21–0.57 0.63± 0.08 0.65 0.44–0.74
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Fig. 1. Variable–variable plot using the descriptors Zn and Sr. Key: C, cava samples; Ch, champagne samples.

3.3.2. SIMCA
Soft independence modeling of class analogies, was pro-

posed by Wold et al.[18,19]. It is a typical class-modeling
method which can be used for the second level of PR.
Class-modeling techniques build frontiers between each
class and the rest of the universe and the decision rule for
a given class is a class-box that envelopes the position of
the class in the pattern space[20]. SIMCA is based on the
evaluation of the principal components derived for each
category separately. Model functions for each class are cal-

Fig. 2. Cooman’s plot for the square SIMCA distances obtained for C and F classes.

culated using a specified number of principal components
and a critical distance with probabilistic meaning[21]. Ev-
ery considered sample is assigned to one class according
to its distance from the class model[22]. In our case, each
class was suitably modeled by using five PCs (explaining
about 80% of class variance).Fig. 2 shows the Cooman’s
plot for the square SIMCA distances obtained for C and F
classes. Cava samples are completely separated from the
champagne ones, without any overlapping between the two
classes.
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SIMCA, being a soft modeling procedure, enables us to
detect the number of false positive/negative for each class.
Therefore, two parameters to validate the classification pro-
cedure may arise: sensitivity (SENS) and specificity (SPEC)
[23]. The SENS of a class corresponds to the rate of vali-
dation objects belonging to this class (nA) that are correctly
classified (〈nA〉). The SPEC of a class corresponds to the rate
of validation objects not belonging to this class (n̄A) that are
correctly considered as belonging to different classes (〈n̄A〉).
This may be explained in terms of the first and second kind
of risk associated with the prediction. The first kind of er-
ror (α) refers to the probability of rejecting erroneously a
member of the class as a non-member (false negative). The
second kind of error (β) is the probability of classifying er-
roneously a non-member of the class as a member (false
positive). Thus, for an ideal class A, we have

SENS= 〈nA〉
nA

= 1 − α

SPEC= 〈n̄A〉
n̄A

= 1 − β

In our case, both SENS and SPEC are unity (or 100%) and,
consequently the probabilities for false negatives and false
positive can be taken as negigible. As a result, a neat dif-
ferentiation between brut cava and brut champagne classes
was achieved. Both are fermented beverages, but commer-
cialised as different products. These results shows that an
authentication of these different products can be established
using some mineral variables as descriptors.

4. Conclusion

Using a chemometric approach, the mineral content
provides a suitable method to differentiate two classes of
sparkling wines, brut cava and brut chamagne samples, both
with D.O. trademark.. The difference between both classes
arises mainly from the descriptors Zn, Sr, Pb, Na, Cu, Ni,
As, P and Cd. Standard LDA and SIMCA procedures led
to excellent classifications with a percentage of hits in both
recalling and prediction of 100%. SIMCA method per-
mits the net separation of class envelopes, with maximum
sensitivity and specificity.
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